Complexité I/O

Auguste Olivry, Guillaume looss, Fabrice Rastello

Équipe Inria CORSE, Grenoble

17 Mars 2022

Optimisation de programme

 Comment modifier un programme pour qu'il s'exécute le plus rapidement possible sur une machine?

Optimisation de programme

• Comment modifier un programme pour qu'il s'exécute le plus rapidement possible sur une machine?

- Aspects à prendre en compte:
 - Utiliser au maximum les unités de calcul
 - Acheminer les données demandées par ces unités de calcul

Optimisation de programme

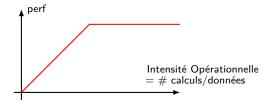
 Comment modifier un programme pour qu'il s'exécute le plus rapidement possible sur une machine?

- Aspects à prendre en compte:
 - Utiliser au maximum les unités de calcul
 - Acheminer les données demandées par ces unités de calcul

- Limites venant de l'architecture:
 - Puissance de calcul (nombre d'unités de calcul, fréquence, . . .)
 - Bande-passante entre les mémoires (RAM, caches, registres)

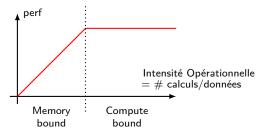
Roofline model

• Roofline model: modélise l'équilibre de la machine



Roofline model

Roofline model: modélise l'équilibre de la machine

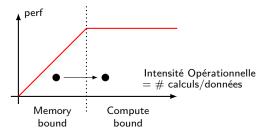


Programme memory/compute-bound

- Memory-bound: les transferts mémoires limitent la perf
- Compute-bound: les unités de calcul limitent la perf

Roofline model

Roofline model: modélise l'équilibre de la machine



Programme memory/compute-bound

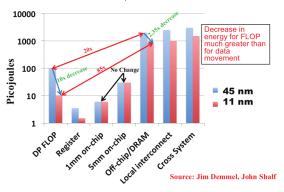
- Memory-bound: les transferts mémoires limitent la perf
- Compute-bound: les unités de calcul limitent la perf
- Transformation: peut améliorer la réutilisation mémoire
 - ⇒ Décalage vers la droite

Optimiser l'I/O

- Évolution de l'équilibre machine:
 - Intel 80286: 2 MIPS, 13 MB/s transfert RAM->CPU
 - Intel core i7: 50k MIPS, 16k MB/s transfert RAM->CPU

Optimiser I'I/O

- Évolution de l'équilibre machine:
 - Intel 80286: 2 MIPS, 13 MB/s transfert RAM->CPU
 - Intel core i7: 50k MIPS, 16k MB/s transfert RAM->CPU
- Évolution ratio énergie calcul/transfert données:



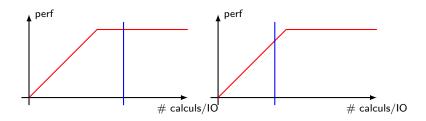
⇒ I/O de plus en plus critique/difficile à optimiser.

Limite algorithmique à l'intensité opérationnelle

- Transfo améliorant l'efficacité d'utilisation des données:
 - ⇒ Décale vers la droite... mais jusqu'à quel point est-ce possible?

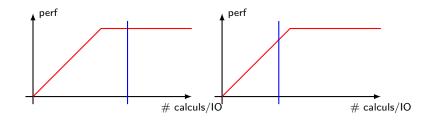
Limite algorithmique à l'intensité opérationnelle

- Transfo améliorant l'efficacité d'utilisation des données:
 - ⇒ Décale vers la droite... mais jusqu'à quel point est-ce possible?



Limite algorithmique à l'intensité opérationnelle

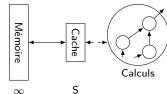
- Transfo améliorant l'efficacité d'utilisation des données:
 - ⇒ Décale vers la droite... mais jusqu'à quel point est-ce possible?



Quel est le nombre maximum de calcul par I/O ?
 (OU) Quel est le nombre minimal d'I/O devant être fait?

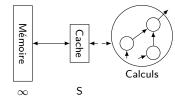
Complexité I/O - Définition

• Modèle mémoire à 2 niveaux:



Complexité I/O - Définition

• Modèle mémoire à 2 niveaux:



Coût I/O

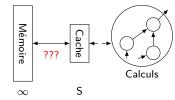
• Nombre de transferts mémoire, pour un ordonnancement donné

 Introduction
 Modélisation
 Borne inf
 Borne sup
 Résultats

 0000€0
 00000
 000000000
 00000000
 00000000

Complexité I/O - Définition

Modèle mémoire à 2 niveaux:



Coût I/O

• Nombre de transferts mémoire, pour un ordonnancement donné

Complexité I/O

- Nombre de transferts mémoire min, pour tout ordonnancement
- ⇒ Comment calculer la complexité I/O d'un programme?

Plan du reste de l'exposé

- Introduction
 - Motivation générale
 - Complexité I/O
- Red-white pebble game
- Borne inférieure
- Borne supérieure
- 6 Résultats

- Comment modéliser le nombre de transferts vers la mémoire rapide?
- Red/White Pebble game (variation de [Hong and Kung 1981])

- Comment modéliser le nombre de transferts vers la mémoire rapide?
- Red/White Pebble game (variation de [Hong and Kung 1981])

Principes généraux

Introduction

- Computational Directed Acyclic Graph (CDAG): graphe des calculs d'un programme
 - Nœud: Entrées, sorties et opérations du programme
 - Arête: Dépendance de donnée entre calculs

- Comment modéliser le nombre de transferts vers la mémoire rapide?
- Red/White Pebble game (variation de [Hong and Kung 1981])

Principes généraux

Introduction

- Computational Directed Acyclic Graph (CDAG): graphe des calculs d'un programme
 - Nœud: Entrées, sorties et opérations du programme
 - Arête: Dépendance de donnée entre calculs
- Jetons se placent sur les nœuds:
 - Jeton Rouge = Donnée actuellement dans la mémoire rapide Seulement *S* jetons rouges!
 - Jeton Blanc = Calcul effectué, donnée dans la mémoire lente

- Comment modéliser le nombre de transferts vers la mémoire rapide?
- Red/White Pebble game (variation de [Hong and Kung 1981])

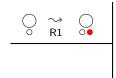
Principes généraux

- Computational Directed Acyclic Graph (CDAG): graphe des calculs d'un programme
 - Nœud: Entrées, sorties et opérations du programme
 - Arête: Dépendance de donnée entre calculs
- Jetons se placent sur les nœuds:
 - Jeton Rouge = Donnée actuellement dans la mémoire rapide Seulement *S* jetons rouges!
 - Jeton Blanc = Calcul effectué, donnée dans la mémoire lente
- Situation initiale: jetons blancs sur les nœuds d'entrée
- But du jeu: couvrir tous les nœuds avec des jetons blancs

Règles du jeu

Règle 1 - Load

On peut mettre un jeton rouge sur un nœud avec un jeton blanc.



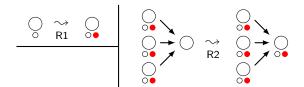
Règles du jeu

Règle 1 - Load

On peut mettre un jeton rouge sur un nœud avec un jeton blanc.

Règle 2 - Calcul

Si un nœud n'a pas de jeton blanc et que tous ses prédécesseurs ont un jeton rouge, on peut y mettre un rouge et un blanc.



Règles du jeu

Règle 1 - Load

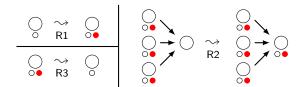
On peut mettre un jeton rouge sur un nœud avec un jeton blanc.

Règle 2 - Calcul

Si un nœud n'a pas de jeton blanc et que tous ses prédécesseurs ont un jeton rouge, on peut y mettre un rouge et un blanc.

Règle 3 - Oubli

On peut retirer un jeton rouge d'un nœud.



Modélisation Introduction Borne inf Résultats

Règles du jeu

Règle 1 - Load

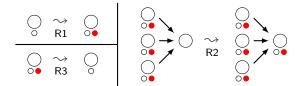
On peut mettre un jeton rouge sur un nœud avec un jeton blanc.

Règle 2 - Calcul

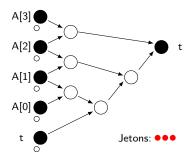
Si un nœud n'a pas de jeton blanc et que tous ses prédécesseurs ont un jeton rouge, on peut y mettre un rouge et un blanc.

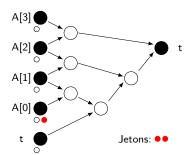
Règle 3 - Oubli

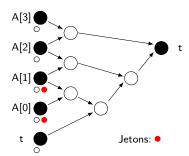
On peut retirer un jeton rouge d'un nœud.

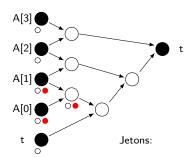


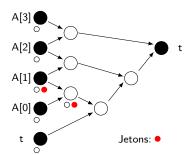
• Pas de recalculs. Nombre Load = nombre de Règle 1.

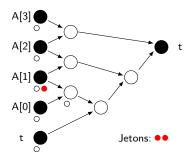


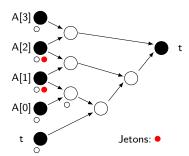


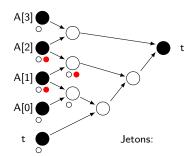


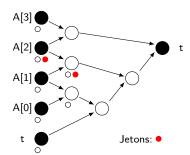


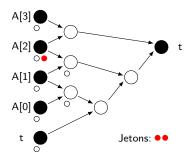


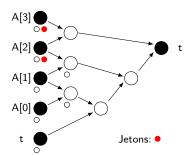


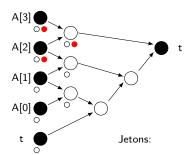


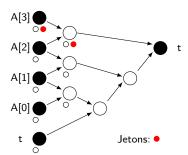


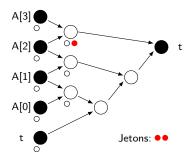


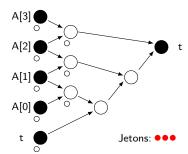


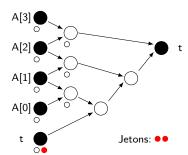


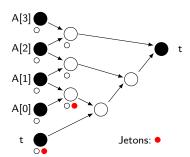


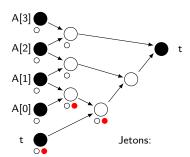


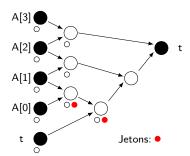


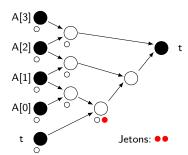


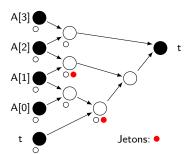


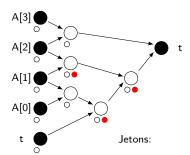


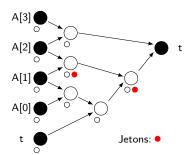


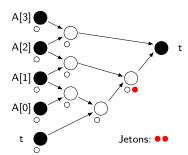


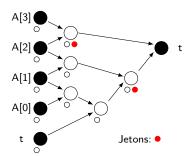


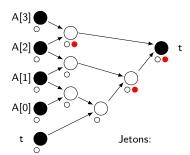


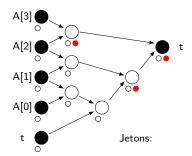




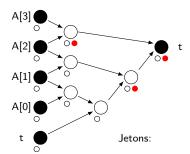








Nombre total de loads: 14.



Nombre total de loads: 14. (Il y a une solution à 9)

Problèmes (Challenges)

- Problèmes:
 - Besoin d'un minimum sur toutes les parties

Problèmes (Challenges)

Problèmes:

- Besoin d'un minimum sur toutes les parties
- Taille du CDAG fréquemment paramétrique:

Nombre de Load dépend de ces paramètres.

Problèmes (Challenges)

Problèmes:

- Besoin d'un minimum sur toutes les parties
- Taille du CDAG fréquemment paramétrique:

```
for (i=1; i<N; i++)
t += A[i-1] + A[i];
```

Nombre de Load dépend de ces paramètres.

- Infaisable sur des graphes quelconques
- ⇒ Se restreint à des graphes de programmes réguliers.

Programme polyédrique

Classe de programme: programme polyédrique

Conditions de boucle + fonctions d'accès affines

Example (Multiplication de matrice)

```
for (i=0; i<I; i++)
  for (j=0; j<J; i++) {
    for (k=0; k<K; i++)
S:    C[i,j] += A[i,k] * B[k,j];
}</pre>
```

Domaine d'itération: $D_S = \{i, j, k \mid 0 \le i < I, 0 \le j < J, 0 \le k < K\}$ Fonction d'accès: $f_C = (i, j, k - > i, j)$

⇒ Représentation mathématique précise et compacte du CDAG. (Parenthèse opportuniste sur la compilation polyédrique)

Plan de l'exposé (en cours)

- Introduction
 - Motivation générale
 - Complexité I/O
- Red-white pebble game
- Borne inférieure
- Borne supérieure
- 6 Résultats

Borne inférieure d'une complexité I/O

- Considérons un programme polyédrique:
 Borne symbolique inférieure de sa complexité I/O ?
- Plusieurs méthodes de preuve: wavefront, 2S-partitions, ...
 - Efficacité dépend de la structure du graphe
- lci: présentation de la méthode des 2S-partitions.

K-partition - Définition

En posant:

- CDAG = (V, E).
- $I \subseteq V$: Nœuds d'entrée de V.
- V_i : sous-ensemble de V.

$InSet(V_i)$

Ensemble des nœuds hors de V_i et prédécesseurs de nœuds de V_i .

K-ensemble

Ensemble V de nœuds tel que $|InSet(V)| \leq K$

K-partition

K-partition

Partition $(V_i)_i$ de (V - I), telle que:

- tous les V_i sont des K-ensembles
- Pas de cycles entre V_i

K-partition

K-partition

Partition $(V_i)_i$ de (V - I), telle que:

- tous les V_i sont des K-ensembles
- Pas de cycles entre V_i

Utilité?

- Si K = S + T (avec S = taille de la mémoire rapide), au moins T loads dans le meilleur cas par ensemble.
- Possible de ramener tout jeu de jetons Rouge-Blanc à une décomposition en 2S-partition.

Idée générale de la méthode des 25-partitions

Lemma (Lien entre une 2S-partition et la complexité I/O)

Soit P le plus grand ensemble d'une 2S-partition, et Q la complexité I/O d'un programme. Alors:

$$Q \ge \left(\left\lceil \frac{|V|}{|P|} \right\rceil - 1 \right) \times S - |I|$$

Idée générale de la méthode des 2*S*-partitions

Lemma (Lien entre une 2S-partition et la complexité I/O)

Soit P le plus grand ensemble d'une 2S-partition, et Q la complexité I/O d'un programme. Alors:

$$Q \ge \left(\left\lceil \frac{|V|}{|P|} \right\rceil - 1 \right) \times S - |I|$$

Morceau restant: taille maximale d'un 2S-ensemble (càd de P) ?

Théorème de Loomis-Whitney (1)

Taille maximale d'un K-ensemble?

Théorème de Loomis-Whitney

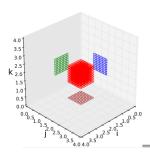
Soit $E \subset \mathbb{R}^d$ et ϕ_1, \ldots, ϕ_d les projections canoniques.

Alors:

$$|E| \le \prod_{i=1}^{d} |\phi_i(E)|^{1/(d-1)}$$

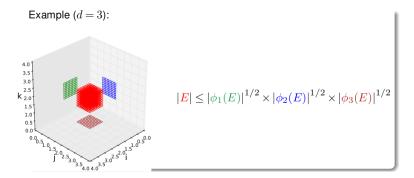
Théorème de Loomis-Whitney (2)

Example (d=3):



$$|E| \le |\phi_1(E)|^{1/2} \times |\phi_2(E)|^{1/2} \times |\phi_3(E)|^{1/2}$$

Théorème de Loomis-Whitney (2)



• **Intuition:** S'arranger pour que les $\phi_i(E)$ s'injectent dans une partie de InSet(E) (qui est de taille bornée)

```
for (i=0; i<I; i++)
  for (j=0; j<J; i++) {
    C[i,j] = 0;
    for (k=0; k<K; i++)
S:    C[i,j] += A[i,k] * B[k,j];
}</pre>
```

• **CDAG:** cube de 2*IJK* nœuds, avec projections selon les axes *i* et *j* et chaîne de dépendance selon *k* (axe de réduction)

```
for (i=0; i<I; i++)
  for (j=0; j<J; i++) {
    C[i,j] = 0;
    for (k=0; k<K; i++)
S:    C[i,j] += A[i,k] * B[k,j];
}</pre>
```

- **CDAG:** cube de 2*IJK* nœuds, avec projections selon les axes *i* et *j* et chaîne de dépendance selon *k* (axe de réduction)
- Soit P un K-ensemble de cet espace:

$$|P| \le |\phi_1(P)|^{1/2} \times |\phi_2(P)|^{1/2} \times |\phi_3(P)|^{1/2}$$

avec les ϕ_i projections canoniques.

```
for (i=0; i<I; i++)
  for (j=0; j<J; i++) {
    C[i,j] = 0;
    for (k=0; k<K; i++)
S:    C[i,j] += A[i,k] * B[k,j];
}</pre>
```

- **CDAG:** cube de 2*IJK* nœuds, avec projections selon les axes *i* et *j* et chaîne de dépendance selon *k* (axe de réduction)
- Soit *P* un *K*-ensemble de cet espace:

$$|P| \le |\phi_1(P)|^{1/2} \times |\phi_2(P)|^{1/2} \times |\phi_3(P)|^{1/2}$$

avec les ϕ_i projections canoniques.

• Or, $|\phi_i(P)| \leq |InSet(P)| \leq K$.

```
for (i=0; i<I; i++)
  for (j=0; j<J; i++) {
    C[i,j] = 0;
    for (k=0; k<K; i++)
S:    C[i,j] += A[i,k] * B[k,j];
}</pre>
```

- CDAG: cube de 2IJK nœuds, avec projections selon les axes i et j et chaîne de dépendance selon k (axe de réduction)
- Soit *P* un *K*-ensemble de cet espace:

$$|P| \le |\phi_1(P)|^{1/2} \times |\phi_2(P)|^{1/2} \times |\phi_3(P)|^{1/2}$$

avec les ϕ_i projections canoniques.

- Or, $|\phi_i(P)| \leq |InSet(P)| \leq K$.
- Donc, $|P| \le K^{3/2}$.

• Considérons une (2S)-partition:

$$Q \ge \left(\left\lceil \frac{|V|}{|P|} \right\rceil - 1 \right) \times S - |I|$$

• Considérons une (2S)-partition:

$$Q \ge \left(\left\lceil \frac{|V|}{|P|} \right\rceil - 1 \right) \times S - |I|$$

• On a trouvé que $|P| \le (2S)^{3/2}$ et |V| = 2IJK.

$$Q \ge \left(\left\lceil \frac{2IJK}{(2S)^{3/2}} \right\rceil - 1 \right) \times S - IK - JK$$

Exemple: multiplication de matrice (2)

• Considérons une (2S)-partition:

$$Q \ge \left(\left\lceil \frac{|V|}{|P|} \right\rceil - 1 \right) \times S - |I|$$

• On a trouvé que $|P| \le (2S)^{3/2}$ et |V| = 2IJK.

$$Q \ge \left(\left\lceil \frac{2IJK}{(2S)^{3/2}} \right\rceil - 1 \right) \times S - IK - JK$$

Borne asymptotique:

$$Q \geq \frac{IJK}{\sqrt{2S}}$$

Exemple: multiplication de matrice (2)

• Considérons une (2S)-partition:

$$Q \ge \left(\left\lceil \frac{|V|}{|P|} \right\rceil - 1 \right) \times S - |I|$$

• On a trouvé que $|P| \le (2S)^{3/2}$ et |V| = 2IJK.

$$Q \ge \left(\left\lceil \frac{2IJK}{(2S)^{3/2}} \right\rceil - 1 \right) \times S - IK - JK$$

Borne asymptotique:

$$Q \ge \frac{IJK}{\sqrt{2S}}$$

• **Raffinement:** Peut améliorer borne sur |P| (facteur $2^{3/2}$):

$$Q \ge \frac{2IJK}{\sqrt{S}}$$

... ce dont je n'ai pas parlé.

- Raffinement de la borne sup sur la taille d'un K-ensemble
 - Projection dans des zones de l'InSet disjointes

... ce dont je n'ai pas parlé.

- Raffinement de la borne sup sur la taille d'un K-ensemble
 - Projection dans des zones de l'InSet disjointes
 - "Petites dimensions" (ex: convolution)

.. ce dont je n'ai pas parlé.

- Raffinement de la borne sup sur la taille d'un K-ensemble
 - Projection dans des zones de l'InSet disjointes
 - "Petites dimensions" (ex: convolution)
- Théorème de Brascamp-Lieb: généralisation de Loomis-Whitney pour tout homomorphisme de groupe ϕ_i
 - ⇒ Permet des projections selon des directions arbitraires
 - ⇒ Analyse les dépendances du programme pour les trouver.

.. ce dont je n'ai pas parlé.

- Raffinement de la borne sup sur la taille d'un K-ensemble
 - Projection dans des zones de l'InSet disjointes
 - "Petites dimensions" (ex: convolution)
- Théorème de Brascamp-Lieb: généralisation de Loomis-Whitney pour tout homomorphisme de groupe ϕ_i
 - ⇒ Permet des projections selon des directions arbitraires
 - ⇒ Analyse les dépendances du programme pour les trouver.
- Programme avec des nids de boucles non parfaitement imbriquées
 - ⇒ Combinaison de bornes venant de plusieurs sections du graphe

Plan de l'exposé (toujours en cours)

- Introduction
 - Motivation générale
 - Complexité I/O
- 2 Red-white pebble game
- Borne inférieure
- 4 Borne supérieure
- 6 Résultats

Borne supérieure d'une complexité I/O

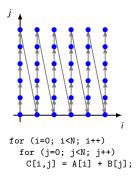
- Borne inférieure: à quel point proche de la vraie valeur?
 - \Rightarrow Veut un encadrement serré de la complexité I/O.

Borne supérieure d'une complexité I/O

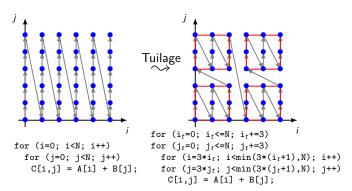
- Borne inférieure: à quel point proche de la vraie valeur?
 - ⇒ Veut un encadrement serré de la complexité I/O.

- Borne supérieure: essaye de trouver une partie (un ordonnancement) qui minimise le nombre de transfert.
 - ⇒ Indication sur comment optimiser un programme pour minimiser l'I/O.

Background - tuilage de programme



Background - tuilage de programme



- Tuilage: groupe des itérations en tuiles atomiques
- Localité des données, introduit niveau de granularité

Background - autres notions

Emprunte mémoire (Footprint)

Ensemble des cases mémoires accédées par une portion de programme.

Background - autres notions

Emprunte mémoire (Footprint)

Ensemble des cases mémoires accédées par une portion de programme.

Réutilisation mémoire

Utilisation multiple d'une donnée qui reste dans la mémoire rapide

Accès de tableau: dimension de réutilisation (ex: $A[i,k] \sim j$)

Background - autres notions

Emprunte mémoire (Footprint)

Ensemble des cases mémoires accédées par une portion de programme.

Réutilisation mémoire

Utilisation multiple d'une donnée qui reste dans la mémoire rapide

Accès de tableau: dimension de réutilisation (ex: $A[i,k] \sim j$)

Peut calculer ces informations avec le modèle polyédrique.

Espace des implémentations

- Classe de programme encore plus simple (tensor-like):
 - Boucles parfaitement imbriquées
 - Boucles pouvant être permutées
 - ⇒ Tuilable avec des tuiles rectangulaires

Espace des implémentations

- Classe de programme encore plus simple (tensor-like):
 - Boucles parfaitement imbriquées
 - Boucles pouvant être permutées
 - ⇒ Tuilable avec des tuiles rectangulaires
- Forme des implémentations recherchées:
 - Programme tuilé
 - Tailles des tuiles sont des paramètres

Example

```
for (i1=0; i1<I; i1+=Ti)
    for (j1=0; j1<J; j1+=Tj)
    for (i=i1; i<min(i1+Ti,I); i++)
        for (j=j1; i<min(j1+Tj,J); j++)
        S(i,j);</pre>
```

Espace des implémentations

- Classe de programme encore plus simple (tensor-like):
 - Boucles parfaitement imbriquées
 - Boucles pouvant être permutées
 - ⇒ Tuilable avec des tuiles rectangulaires
- Forme des implémentations recherchées:
 - Programme tuilé
 - Tailles des tuiles sont des paramètres

Example

```
for (i1=0; i1<I; i1+=Ti)
for (j1=0; j1<J; j1+=Tj)
for (i=i1; i<min(i1+Ti,I); i++)
for (j=j1; i<min(j1+Tj,J); j++)
S(i,j);
```

⇒ Quelle permutation de boucle? Tailles de tuile?

Choix de la permutation de boucle

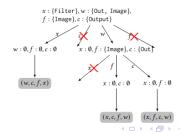
- **Contrainte:** emprunte mémoire de la tuile interne rentre dans la mémoire rapide.
 - ⇒ Permutation des boucles internes n'importe pas.

Choix de la permutation de boucle

- **Contrainte:** emprunte mémoire de la tuile interne rentre dans la mémoire rapide.
 - ⇒ Permutation des boucles internes n'importe pas.
- Permutation de boucle au dessus? (beaucoup de choix)
 - Maximiser la réutilisation des données
 - Certaines dimensions sont meilleures que d'autres

Choix de la permutation de boucle

- Contrainte: emprunte mémoire de la tuile interne rentre dans la mémoire rapide.
 - ⇒ Permutation des boucles internes n'importe pas.
- Permutation de boucle au dessus? (beaucoup de choix)
 - Maximiser la réutilisation des données
 - Certaines dimensions sont meilleures que d'autres
- Algorithme de sélection de permutation: (sur un exemple)



Choix des taille de tuile - Fonction de coût

Pour une permutation donnée, minimiser l'I/O:

Example (Matmult, permutation (i, j, k))

```
for (i1=0; i1<N_i; i1+=Ti)

for (j1=0; j1<N_j; j1+=Tj)

for (k=0; k<N_k; k++)

for (i=i1; i<min(i1+Ti,I); i++)

for (j=j1; i<min(j1+Tj,J); j++)

C[i,j] += A[i,k] × B[k,j];
```

• Suppose que $T_i T_j + T_i + T_j < S$

Choix des taille de tuile - Fonction de coût

Pour une permutation donnée, minimiser l'I/O:

Example (Matmult, permutation (i, j, k))

```
for (i1=0; i1<N_i; i1+=Ti)

for (j1=0; j1<N_j; j1+=Tj)

for (k=0; k<N_k; k++)

for (i=i1; i<min(i1+Ti,I); i++)

for (j=j1; i<min(j1+Tj,J); j++)

C[i,j] += A[i,k] × B[k,j];
```

- Suppose que $T_i T_j + T_i + T_j < S$
- Boucle sur k:
 - (k=0) Tout miss: $T_i T_j + T_i + T_j$
 - (k>0) Réutilisation de C[i,j]: $T_i + T_j$

$$\Rightarrow (T_i T_j + T_i + T_j) + (N_k - 1)(T_i + T_j) = (T_i T_j + N_k T_i + N_k T_j)$$

Choix des taille de tuile - Fonction de coût

• Pour une permutation donnée, minimiser l'I/O:

Example (Matmult, permutation (i, j, k))

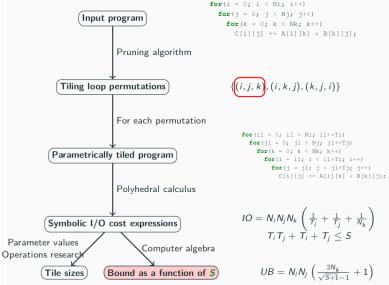
- Suppose que $T_i T_j + T_i + T_j < S$
- Boucle sur k:
 - (k=0) Tout miss: $T_i T_j + T_i + T_j$
 - (k>0) Réutilisation de C[i,j]: $T_i + T_j$

$$\Rightarrow (T_i T_j + T_i + T_j) + (N_k - 1)(T_i + T_j) = (T_i T_j + N_k T_i + N_k T_j)$$

• Avec les boucles sur i1 et j1 (tout le programme):

$$\frac{N_i}{T_i}\frac{N_j}{T_i}(T_iT_j+N_kT_i+N_kT_j)=N_iN_jN_k\left(\frac{1}{T_i}+\frac{1}{T_j}+\frac{1}{N_k}\right)$$

Flot complet de IOUB - Multiplication de matrice



Automatisation

Borne inférieure: IOLB
 Sur tout programme polyédrique

 Borne supérieure: IOUB
 Sur une sous-classe de programme "tensor-like" (limitation du solver)

 Deux protos disponible en ligne: https://iocomplexity.corse.inria.fr/ Modélisation Borne inf Borne sup 00000 00000000 00000000

Résultats IOLB sur Polybench (UB: calcul manuel)

Introduction

kernel	# input data	# ops	Q_{low}^{∞}	$OI_{\text{manual}} \leq OI \leq OI_{\text{up}}$	ratio
2mm	$N_i N_k + N_k N_j$	2(NiN _j N _k	$2(N_iN_jN_k$	$\sqrt{S} \le OI \le \sqrt{S}$	1
	$+N_jN_l+N_lN_l$	$+N_iN_jN_l$	$+N_iN_jN_l)/\sqrt{S}$		
3mm	$N_i N_k + N_k N_j$	$2(NiN_jN_k + N_jN_lN_m$	$2(N_iN_jN_k + N_iN_jN_l)$	$\sqrt{S} \le OI \le \sqrt{S}$	1
	$+N_jN_m+N_mN_l$	$+N_iN_jN_l$	$+N_{i}N_{l}N_{m})/\sqrt{S}$		
cholesky	1/2 N ²	$\frac{1}{3}N^{3}$	$\frac{1}{6}N^{3}/\sqrt{S}$	$\sqrt{S} \le OI \le 2\sqrt{S}$	2
correlation	MN	M^2N	$\frac{1}{2}M^2N/\sqrt{S}$	$\sqrt{S} \le OI \le 2\sqrt{S}$	2
covariance	MN	M^2N	$\frac{1}{2}M^2N/\sqrt{S}$	$\sqrt{S} \le OI \le 2\sqrt{S}$	2
doitgen	$N_p N_q N_r + N_p^2$	$2N_p^2N_qN_r$	$2N_p^2N_qN_r/\sqrt{S}$	$\sqrt{S} \le OI \le \sqrt{S}$	1
fdtd-2d	$3N_xN_y + T$	$11 N_{\times} N_{y} T$	$\frac{2}{3\sqrt{3}}N_XN_yT/\sqrt{S}$	$\frac{11}{24}\sqrt{3}\sqrt{S} \le OI \le \frac{33}{2}\sqrt{3}\sqrt{S}$	36
flovd-warshall	N ²	2N ³	$\frac{3\sqrt{3}}{2N^3/\sqrt{5}}$	\sqrt{S} < OI < \sqrt{S}	1
gemm	$N_iN_i + N_iN_k + N_iN_k$	$2N_iN_iN_k$	$2N_iN_iN_k/\sqrt{S}$	$\sqrt{s} < OI < \sqrt{s}$	1
heat-3d	N ³	30 N ³ T	§ ³ √2N³ T / ³ √S	$\frac{5}{2}\sqrt[3]{5} < OI < 40 \cdot 2^{2/3}\sqrt[3]{5}$	16 · 2 ^{2/3}
jacobi-1d	l N	6NT	NT/S	² ³ / ₃ S ≤ OI ≤ 24 S	16
jacobi-2d	N ²	10 N ² T	$\frac{2}{3\sqrt{3}}N^2T/\sqrt{S}$	$\frac{5}{4}\sqrt{S} \le OI \le 15\sqrt{3}\sqrt{S}$	12√3
lu	N ²	² / ₃ N ³	$\frac{3\sqrt{3}}{3}N^{3}/\sqrt{S}$	\sqrt{s} < OI < \sqrt{s}	1
ludcmp	N ²	$\frac{2}{3}N^{3}$	$\frac{2}{3}N^3/\sqrt{S}$	$\sqrt{S} \le OI \le \sqrt{S}$	1
seidel-2d	N ²	9 N ² T	$\frac{2}{3\sqrt{3}}N^2T/\sqrt{S}$	$\frac{9}{4}\sqrt{S} \le OI \le \frac{27\sqrt{3}}{2}\sqrt{S}$	6√3
symm	$\frac{1}{2}M^2 + 2MN$	$2M^2N$	$2M^2N/\sqrt{S}$	$\sqrt{S} \le OI \le \sqrt{S}$	1
syr2k	$\frac{1}{2}N^2 + 2MN$	$2MN^2$	MN^2/\sqrt{S}	$\sqrt{S} \le OI \le 2\sqrt{S}$	2
syrk	$\frac{1}{2}N^2 + MN$	MN^2	$\frac{1}{2}MN^2/\sqrt{S}$	$\sqrt{S} \le OI \le 2\sqrt{S}$	2
trmm	$\frac{1}{2}M^2 + MN$	M^2N	M^2N/\sqrt{S}	$\sqrt{S} \le OI \le \sqrt{S}$	1
atax	MN	4MN	MN	4≤ <i>OI</i> ≤4	1
bicg	MN	4MN	MN	4≤ <i>OI</i> ≤4	1
deriche	HW	32 <i>HW</i>	HW	$\frac{16}{3} \le OI \le 32$	6
gemver	N ²	10N ²	N ²	5≤ <i>OI</i> ≤10	2
gesummv	2N ²	4N ²	2N ²	2≤ OI ≤2	1
mvt	N ²	4N ²	N ²	4≤ <i>OI</i> ≤4	1
trisolv	$\frac{1}{2}N^{2}$	N ²	$\frac{1}{2}N^{2}$	2≤ <i>OI</i> ≤2	1
adi	N ²	30 N ² T	N ² T	5≤ <i>OI</i> ≤30	6
durbin	N	$2N^2$	$\frac{1}{2}N^{2}$	$\frac{2}{3} \le OI \le 4$	6
gramschmidt	MN	2MN ²	MN^2/\sqrt{S}	$1 \le OI \le 2\sqrt{5}$	2√5
nussinov	$\frac{1}{2}N^{2}$	$\frac{1}{3}N^{3}$	$\frac{1}{6}N^3/\sqrt{S}$	$1 \le OI \le 2\sqrt{S}$	2√5

Résultats

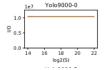
00000

Résultats IOUB

	10 /			
TC ab-ac-cb	$UB = \frac{2ABC}{\sqrt{S+1}-1} + BC$			
	LB = max $\left(AB + AC + CB, -2 + C - S + 2A + 2B + \frac{2AB(C-1)}{\sqrt{S}} \right)$			
TC abcd-aebf-fdec	$UB = \frac{2ABCDEF}{\sqrt{S+1}-1} + CDEF$			
	$LB = \max \left(ABCD + AEBF + FDEC, -3 + EF - S + 3AB + 3CD - ABCD + \frac{2ABCD(EF-1)}{\sqrt{S}} \right)$			
2D Convolution	UB = $CFHWXY \left(\frac{1}{XY} + \frac{1}{H\Delta W} + \frac{(H+\Delta-1)(W+X-1)}{H\Delta^2WX} \right)$ where $\Delta = \frac{-HW+V+\sqrt{H^2W^2+4HSW-2HW^2+4SW+4S+W^2}}{2(HW+W+1)}$			
	$LB = \max \left(BC(Y + H - 1)(X + W - 1) + BFXY + FCHW,\right)$			
	$-2 - S + C + 4F + BY + BX + 2BXY - 2BXYF + \frac{BFXY(WHC-1)}{S}$			
	$-2 - S + C + 4F + BY + BX + 2BXY - 2BXFY + \frac{2BXYCF\sqrt{HW}}{\sqrt{S}} - \frac{2BXYF}{\sqrt{HWS}}$			
	$-2 - S + C + 4F + BY + BX + 2BXY - 2BXFY + \frac{2XYCF\sqrt{BHW}}{\sqrt{S}} - \frac{2XYF\sqrt{B}}{\sqrt{HWS}}$			

Résultats IOUB

	10 /		
TC ab-ac-cb	$UB = \frac{2ABC}{\sqrt{S+1}-1} + BC$		
	LB = max $\left(AB + AC + CB, -2 + C - S + 2A + 2B + \frac{2AB(C-1)}{\sqrt{S}} \right)$		
TC abcd-aebf-fdec	$UB = \frac{2ABCDEF}{\sqrt{S+1}-1} + CDEF$		
	$LB = \max \left(ABCD + AEBF + FDEC, -3 + EF - S + 3AB + 3CD - ABCD + \frac{2ABCD(EF-1)}{\sqrt{S}} \right)$		
2D Convolution	UB = $CFHWXY\left(\frac{1}{XY} + \frac{1}{H\Delta W} + \frac{(H+\Delta-1)(W+X-1)}{H\Delta^2WX}\right)$ where $\Delta = \frac{-HW+W+\sqrt{H^2W^2+4HSW-2HV^2+4SW+4S+W^2}}{2(HW+W+1)}$		
	2(HW+W+1)		
	$LB = \max \left(BC(Y + H - 1)(X + W - 1) + BFXY + FCHW,\right)$		
	$-2 - S + C + 4F + BY + BX + 2BXY - 2BXYF + \frac{BFXY(WHC-1)}{S}$		
	$-2 - S + C + 4F + BY + BX + 2BXY - 2BXFY + \frac{2BXYCF\sqrt{HW}}{\sqrt{S}} - \frac{2BXYF}{\sqrt{HWS}}$		
	$-2-S+C+4F+BY+BX+2BXY-2BXFY+\frac{2XYCF\sqrt{BHW}}{\sqrt{S}}-\frac{2XYF\sqrt{B}}{\sqrt{HWS}}\right)$		



Directions en cours/futures (aka TODO-list)

- Amélioration de borne inférieure:
 - Calculs de stencils: facteur multiplicatif
 - gramschmidt + nussinov : ratio à améliorer

- Utilisation de l'ordonnancement trouvé par IOUB
 - Possible d'appliquer l'algo sur plusieurs niveaux mémoire
 - Modèle idéal (scratchpad) ≠ Vrai cache
 - Utilisable en première approximation?

Merci de votre attention...

... Avez-vous des questions?