Tightening I/O Lower Bounds through the Hourglass Dependency Pattern

Lionel Eyraud-Dubois
Guillaume looss
Julien Langou
Fabrice Rastello

(Inria Bordeaux)
(Inria Grenoble)
(University of Colorado Denver + Inria Lyon)
(Inria Grenoble)

SPAA'24

18 June 2024

Motivation

- When optimizing for performance, many aspects to consider.
- Need to estimate some key program properties:
- Volume of computation ?
\Rightarrow Algorithmic complexity.

Motivation

- When optimizing for performance, many aspects to consider.
- Need to estimate some key program properties:
- Volume of computation?
\Rightarrow Algorithmic complexity.
- Volume of I/O to be transferred across memories ?
\Rightarrow I/O Complexity: minimal amount of I / O required.

Motivation

- When optimizing for performance, many aspects to consider.
- Need to estimate some key program properties:
- Volume of computation?
\Rightarrow Algorithmic complexity.
- Volume of I/O to be transferred across memories ?
\Rightarrow I/O Complexity: minimal amount of I / O required.
- How to model \& compute this I/O Complexity ?

I/O Complexity

- 2-level memory model:

I/O Complexity

- 2-level memory model:

I/O Complexity of a program
Minimal number of memory transfer, for any schedule

I/O Complexity

- 2-level memory model:

I/O Complexity of a program
Minimal number of memory transfer, for any schedule

- Direct computation not feasible
\Rightarrow Lower bound (proof) + upper bound (exhibit schedule)

I/O Complexity

- 2-level memory model:

I/O Complexity of a program
Minimal number of memory transfer, for any schedule

- Direct computation not feasible
\Rightarrow Lower bound (proof) + upper bound (exhibit schedule)
- Focus on Reads + No recomputation

Content of this presentation

- Background: K-partitioning proof method.

Content of this presentation

- Background: K-partitioning proof method.
- Why this is not optimal for some kernels? Identify pattern of dependence that causes this issue.
\Rightarrow Hourglass pattern.

Content of this presentation

- Background: K-partitioning proof method.
- Why this is not optimal for some kernels? Identify pattern of dependence that causes this issue.
\Rightarrow Hourglass pattern.
- Adapt K-partitioning to improve the bound. Integrated in automatic lower bound derivation tool (IOLB).
\Rightarrow Improve the bounds of many kernels by asymptotic factor.

Computational Directed Acyclic Graph

We need to reason about the computation of a program.

- Computational Directed Acyclic Graph (CDAG):
- Node = one computation, or input.
- Edge = dependence between computations.

Computational Directed Acyclic Graph

We need to reason about the computation of a program.

- Computational Directed Acyclic Graph (CDAG):
- Node $=$ one computation, or input.
- Edge = dependence between computations.
- Needs regularity in a CDAG: polyhedral programs.
- Loop indexes satisfies affine constraints (ex: " $0 \leq i<N$ ").
- Memory accesses are affine (ex: "A[2i-j+1]").
\Rightarrow Many linear algebra kernels fits these criteria.

Definition (K-set)

Set of nodes of the CDAG, such that the size of its inset (input data) is $\leq K$.

- Idea: Partition the CDAG into convex K-sets ($=K$-partition)

K-partitioning method

Definition (K-set)

Set of nodes of the CDAG, such that the size of its inset (input data) is $\leq K$.

- Idea: Partition the CDAG into convex K-sets ($=K$-partition)

Theorem (Hong and Kung'81)

With S the cache size, for all K-partition:

$$
\begin{aligned}
\# I / O & \geq(K-S) \times \min (\text { Num_KSets_in_KPartition }) \\
& \geq(K-S) \times \frac{\text { Num_Nodes_CDAG }^{m a x\left(S i z e _K S e t\right)}}{} \quad \text {) }
\end{aligned}
$$

\Rightarrow Convert upper bound on K-set into lower bound on I/O.

Deriving an upper bound of a K-set

E K-set of arbitrary shape Upper bound on $|E|$?

Deriving an upper bound of a K-set

E K-set of arbitrary shape Upper bound on $|E|$?
$\operatorname{In} \operatorname{Set}(E)$: input data of E $|\operatorname{InSet}(E)| \leq K$

Deriving an upper bound of a K-set

E K-set of arbitrary shape Upper bound on $|E|$?
$\operatorname{In} \operatorname{Set}(E)$: input data of E $|\operatorname{InSet}(E)| \leq K$

1) Derive paths that maps from E to $\operatorname{InSet}(E)$

Deriving an upper bound of a K-set

E K-set of arbitrary shape Upper bound on $|E|$?
$\operatorname{In} \operatorname{Set}(E)$: input data of E $|\operatorname{InSet}(E)| \leq K$

1) Derive paths that maps from E to $\operatorname{InSet}(E)$
2) Projections ϕ_{x} from paths $\left|\phi_{x}(E)\right| \leq|\operatorname{InSet}(E)| \leq K$

Deriving an upper bound of a K-set

E K-set of arbitrary shape Upper bound on $|E|$?
$\operatorname{In} \operatorname{Set}(E)$: input data of E $|\operatorname{InSet}(E)| \leq K$

1) Derive paths that maps from E to $\operatorname{InSet}(E)$
2) Projections ϕ_{x} from paths

$$
\left|\phi_{x}(E)\right| \leq|\operatorname{InSet}(E)| \leq K
$$

3) Brascamp-Lieb theorem:

$$
\begin{aligned}
& |E| \leq\left|\phi_{1}(E)\right| \times\left|\phi_{2}(E)\right| \\
& \Rightarrow|E| \leq K^{2}
\end{aligned}
$$

Example: Modified Gram-Schmidt

```
for (k=0; k<N; k++) {
    nrm = 0.0;
    for (i=0; i<M; i++)
        nrm += A[i][k] * A[i][k];
    R[k][k] = sqrt(nrm);
    for (i=0;i<M; i++)
        Q[i][k] = A[i][k] / R[k][k];
    for (j = k + 1; j < N; j++) {
        R[k][j] = 0.0;
        for (i=0;i<M; i++)
SR: }\quad\textrm{R}[\textrm{k}][\textrm{j}]+=\textrm{Q}[\textrm{i}][k] * A[i][j]
        for (i=0;i<M; i++)
SA: 
    }
}
```


Example: Modified Gram-Schmidt

```
for ( \(k=0 ; k<N ; k++\) ) \{
    nrm \(=0.0\);
    for ( \(\mathrm{i}=0 ; \mathrm{i}<\mathrm{M} ; \mathrm{i}++\) )
        nrm \(+=\mathrm{A}[\mathrm{i}][\mathrm{k}] * \mathrm{~A}[\mathrm{i}][\mathrm{k}]\);
    \(\mathrm{R}[\mathrm{k}][\mathrm{k}]=\operatorname{sqrt}(\mathrm{nrm}) ;\)
    for ( \(\mathrm{i}=0 ; \mathrm{i}<\mathrm{M} ; \mathrm{i}++\) )
        \(\mathrm{Q}[\mathrm{i}][\mathrm{k}]=\mathrm{A}[\mathrm{i}][\mathrm{k}] / \mathrm{R}[\mathrm{k}][\mathrm{k}] ;\)
    for ( \(\mathrm{j}=\mathrm{k}+1 ; \mathrm{j}<\mathrm{N} ; \mathrm{j}++\) ) \{
        \(\mathrm{R}[\mathrm{k}][\mathrm{j}]=0.0\);
        for ( \(\mathrm{i}=0 ; \mathrm{i}<\mathrm{M} ; \mathrm{i}++\) )
SR: \(\quad \mathrm{R}[\mathrm{k}][\mathrm{j}]+=\mathrm{Q}[\mathrm{i}][k]\) * \(\mathrm{A}[\mathrm{i}][\mathrm{j}]\);
        for \((\mathrm{i}=0 ; \mathrm{i}<\mathrm{M} ; \mathrm{i}++\) )
SA: \(\quad \mathrm{A}[\mathrm{i}][\mathrm{j}]=\frac{\mathrm{A}[\mathrm{i}][\mathrm{j}]}{\phi_{i, j}}-\frac{\mathrm{Q}[\mathrm{i}][\mathrm{k}]}{\phi_{i, k}} * \frac{\mathrm{R}[\mathrm{k}][\mathrm{j}] ;}{\phi_{k, j}}\)
\}
```

3 paths $\Rightarrow 3$ projections:

$$
\left|\phi_{\bullet, \bullet}(E)\right| \leq K
$$

Example: Modified Gram-Schmidt

```
for (k=0; k<N; k++) {
    nrm = 0.0;
    for (i=0;i<M; i++)
        nrm += A[i][k] * A[i][k];
    R[k][k] = sqrt(nrm);
    for (i=0;i<M; i++)
        Q[i][k] = A[i][k] / R[k][k];
    for (j = k + 1; j < N; j++) {
        R[k][j] = 0.0;
        for (i=0;i<M; i++)
SR: R[k][j] += Q[i][k] * A[i][j];
        for (i=0;i<M; i++)
SA: 
}
```

3 paths $\Rightarrow 3$ projections:

$$
\left|\phi_{\bullet, \bullet}(E)\right| \leq K
$$

Brascamp-Lieb:

$$
\begin{gathered}
|E| \leq\left|\phi_{i, j}(E)\right|^{\frac{1}{2}} \times\left|\phi_{i, k}(E)\right|^{\frac{1}{2}} \times\left|\phi_{k, j}(E)\right|^{\frac{1}{2}} \\
\quad \Rightarrow|E| \leq K^{\frac{3}{2}}
\end{gathered}
$$

```
SR: \(\quad \mathrm{R}[\mathrm{k}][\mathrm{j}]+=\mathrm{Q}[\mathrm{i}][\mathrm{k}] * \mathrm{~A}[\mathrm{i}][\mathrm{j}]\); for ( \(\mathrm{i}=0 ; \mathrm{i}<\mathrm{M} ; \mathrm{i}++\) )
```


Example: Modified Gram-Schmidt

```
```

for (k=0;k<N; k++) {

```
```

for (k=0;k<N; k++) {
nrm = 0.0;
nrm = 0.0;
for (i=0;i<M; i++)
for (i=0;i<M; i++)
nrm += A[i][k] * A[i][k];
nrm += A[i][k] * A[i][k];
R[k][k] = sqrt(nrm);
R[k][k] = sqrt(nrm);
for (i=0;i<M; i++)
for (i=0;i<M; i++)
Q[i][k] = A[i][k] / R[k][k];
Q[i][k] = A[i][k] / R[k][k];
for (j=k+1; j < N; j++) {
for (j=k+1; j < N; j++) {
R[k][j] = 0.0;
R[k][j] = 0.0;
for (i=0;i<M; i++)
for (i=0;i<M; i++)
SR: R[k][j] += Q[i][k] * A[i][j];
SR: R[k][j] += Q[i][k] * A[i][j];
for (i=0;i<M; i++)
for (i=0;i<M; i++)
SA: }\mp@subsup{}}{}}{\textrm{A}[i][j]}=\frac{\textrm{A}[i][j]}{\mp@subsup{\phi}{i,j}{\prime}}-\frac{\textrm{Q}[i][\textrm{k}]}{\mp@subsup{\phi}{i,k}{}}*\frac{\textrm{R}[k][j];}{\mp@subsup{\phi}{k,j}{\prime}
SA: }\mp@subsup{}}{}}{\textrm{A}[i][j]}=\frac{\textrm{A}[i][j]}{\mp@subsup{\phi}{i,j}{\prime}}-\frac{\textrm{Q}[i][\textrm{k}]}{\mp@subsup{\phi}{i,k}{}}*\frac{\textrm{R}[k][j];}{\mp@subsup{\phi}{k,j}{\prime}
}

```
```

}

```
```


Example: Modified Gram-Schmidt

```
for (k=0; k<N; k++) {
    nrm = 0.0;
    for (i=0;i<M; i++)
        nrm += A[i][k] * A[i][k];
    R[k][k] = sqrt(nrm);
    for (i=0;i<M; i++)
        Q[i][k] = A[i][k] / R[k][k];
    for (j = k + 1; j < N; j++) {
        R[k][j] = 0.0;
        for (i=0;i<M; i++)
SR: R[k][j] += Q[i][k] * A[i][j];
        for (i=0;i<M; i++)
SA: }\mp@subsup{}}{}}{}\quad\textrm{A}[\textrm{i}][\textrm{j}]=\frac{\textrm{A}[i][j]}{\mp@subsup{\phi}{i,j}{\prime}}-\frac{\textrm{Q}[i][\textrm{k}]}{\mp@subsup{\phi}{i,k}{\prime}}*\frac{\textrm{R}[k][j];}{\mp@subsup{\phi}{k,j}{\prime}
}
```

- Similar to the bound of a matrix multiplication. ... but best known I/O cost for MGS is: $O\left(M N^{2}\right)$. [Demmel12]
\Rightarrow Can we do better?

The Hourglass pattern

The Hourglass pattern

The Hourglass pattern

Implication on the shape of E

Split the connected components of E (a K-set) in 2: $E=E_{1} \uplus E_{2}$

- Thick along temporal dimension $\left(E_{1}\right)$
\Rightarrow Must cover all the Red/Bcst dim
- Flat along temporal dimension $\left(E_{2}\right)$

Implication on the shape of E

Split the connected components of E (a K-set) in 2: $E=E_{1} \uplus E_{2}$

- Thick along temporal dimension $\left(E_{1}\right)$
\Rightarrow Must cover all the Red/Bcst dim
- Flat along temporal dimension $\left(E_{2}\right)$

Implication on the shape of E

Split the connected components of E (a K-set) in 2: $E=E_{1} \uplus E_{2}$

- Thick along temporal dimension $\left(E_{1}\right)$
\Rightarrow Must cover all the Red/Bcst dim
- Flat along temporal dimension $\left(E_{2}\right)$

Implication on the shape of E

Split the connected components of E (a K-set) in 2: $E=E_{1} \uplus E_{2}$

- Thick along temporal dimension $\left(E_{1}\right)$
\Rightarrow Must cover all the Red/Bcst dim
- Flat along temporal dimension $\left(E_{2}\right)$

$$
\begin{aligned}
& \left|\phi_{i}\left(E_{1}\right)\right|=M \\
& \text { If } \phi_{\bullet, i} \text { is one projection: } \\
& \left|\phi_{\bullet}\left(E_{1}\right)\right| \leq \frac{K}{M} \\
& \left|\phi_{k}\left(E_{2}\right)\right| \leq 2
\end{aligned}
$$

\Rightarrow New bounds on projection sizes to exploit, on both parts.

Putting things together

Example - Modified Gram-Schmidt.

By adapting the list of projections given to Brascamp-Lieb:

- First part (Thick):
- Instead of: $\left|E_{1}\right| \leq\left|\phi_{i, j}\left(E_{1}\right)\right|^{\frac{1}{2}} \times\left|\phi_{i, k}\left(E_{1}\right)\right|^{\frac{1}{2}} \times\left|\phi_{j, k}\left(E_{1}\right)\right|^{\frac{1}{2}} \leq K^{\frac{3}{2}}$.
- We have:

$$
\left|E_{1}\right| \leq\left|\phi_{i}\left(E_{1}\right)\right| \times\left|\phi_{j}\left(E_{1}\right)\right| \times\left|\phi_{k}\left(E_{1}\right)\right| \leq M \times \frac{K}{M} \times \frac{K}{M}=\frac{K^{2}}{M}
$$

Putting things together

Example - Modified Gram-Schmidt.

By adapting the list of projections given to Brascamp-Lieb:

- First part (Thick):
- Instead of: $\left|E_{1}\right| \leq\left|\phi_{i, j}\left(E_{1}\right)\right|^{\frac{1}{2}} \times\left|\phi_{i, k}\left(E_{1}\right)\right|^{\frac{1}{2}} \times\left|\phi_{j, k}\left(E_{1}\right)\right|^{\frac{1}{2}} \leq K^{\frac{3}{2}}$.
- We have:

$$
\left|E_{1}\right| \leq\left|\phi_{i}\left(E_{1}\right)\right| \times\left|\phi_{j}\left(E_{1}\right)\right| \times\left|\phi_{k}\left(E_{1}\right)\right| \leq M \times \frac{K}{M} \times \frac{K}{M}=\frac{K^{2}}{M}
$$

- Second part (Flat):
- Instead of: $\left|E_{2}\right| \leq K^{\frac{3}{2}}$.
- We have: $\left|E_{2}\right| \leq\left|\phi_{k}\left(E_{2}\right)\right| \times\left|\phi_{i, j}\left(E_{2}\right)\right| \leq 2 K$.

Putting things together

Example - Modified Gram-Schmidt.

By adapting the list of projections given to Brascamp-Lieb:

- First part (Thick):
- Instead of: $\left|E_{1}\right| \leq\left|\phi_{i, j}\left(E_{1}\right)\right|^{\frac{1}{2}} \times\left|\phi_{i, k}\left(E_{1}\right)\right|^{\frac{1}{2}} \times\left|\phi_{j, k}\left(E_{1}\right)\right|^{\frac{1}{2}} \leq K^{\frac{3}{2}}$.
- We have:

$$
\left|E_{1}\right| \leq\left|\phi_{i}\left(E_{1}\right)\right| \times\left|\phi_{j}\left(E_{1}\right)\right| \times\left|\phi_{k}\left(E_{1}\right)\right| \leq M \times \frac{K}{M} \times \frac{K}{M}=\frac{K^{2}}{M}
$$

- Second part (Flat):
- Instead of: $\left|E_{2}\right| \leq K^{\frac{3}{2}}$.
- We have: $\left|E_{2}\right| \leq\left|\phi_{k}\left(E_{2}\right)\right| \times\left|\phi_{i, j}\left(E_{2}\right)\right| \leq 2 K$.
- Total: $|E|=\left|E_{1}\right|+\left|E_{2}\right| \leq \frac{K^{2}}{M}+2 K$. (instead of: $|E| \leq K^{\frac{3}{2}}$)
\Rightarrow When M is big, we gain a \sqrt{K} factor in the asymptotic bound.

Results

- Proof automated/integrated to IOLB [Olivry et al, PLDI'20] Demo: https://iocomplexity.corse.inria.fr/

Results

- Proof automated/integrated to IOLB [Olivry et al, PLDI'20] Demo: https://iocomplexity.corse.inria.fr/
- Asymptotic I/O bounds of kernels with hourglass:

Kernel	Old bound	New bound (hourglass)	Upper bound
MGS	$\Omega\left(\frac{M N^{2}}{\sqrt{S}}\right)$	$\Omega\left(\frac{M^{2} N(N-1)}{S+M}\right)$	$O\left(\frac{M^{2} N^{2}}{S}\right)$
QR HH A2V	$\Omega\left(\frac{M N^{2}}{\sqrt{S}}\right)$	$\Omega\left(\frac{M N^{2}(N-M)}{N-M-S}\right)$	$O\left(\frac{M^{2} N^{2}}{S}\right)$
QR HH V2Q	$\Omega\left(\frac{M N^{2}}{\sqrt{S}}\right)$	$\Omega\left(\frac{M N^{2}(N-M)}{N-M-S}\right)$	$O\left(\frac{M^{2} N^{2}}{S}\right)$
GEBD2	$\Omega\left(\frac{M N^{2}}{\sqrt{S}}\right)$	$\Omega\left(\frac{M N^{2}(M-N+1)}{8(S+M-N+1)}\right)$	$O\left(M N^{2}\right)$
GEHD2	$\Omega\left(\frac{N^{3}}{\sqrt{S}}\right)$	$\Omega\left(\frac{N}{N+2 S}\right)$	$O\left(N^{3}\right)$
SYTD2 (new)	$\Omega\left(\frac{N^{3}}{\sqrt{S}}\right)$	$\Omega\left(\frac{N^{4}}{N+2 S-2}\right)$	$O\left(N^{3}\right)$

[Bonus slide] "Triangular" hourglass

- Width of hourglass might vary (with temporal dim). + For our bound, need to use the minimum of the width.
\Rightarrow Issue when this minimum is 1 .

[Bonus slide] "Triangular" hourglass

- Width of hourglass might vary (with temporal dim).
+ For our bound, need to use the minimum of the width.
\Rightarrow Issue when this minimum is 1 .
- Solution: loop splitting transformation.
- Does not change the CDAG.
- Hourglass detected on the "wide" part of the split.
- Adjust where to split to deduce the best bound.

